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Abstract

Olfactory dysfunction is an important public health problem in the United States, with approximately 14million elderly Americans
having chronic olfactory impairment. We performed a genome-wide linkage scan for loci influencing susceptibility to hyposmia
in the Hutterites, a founder population of European ancestry. Using interviews regarding the olfactory medical history and psy-
chophysical smell testing, we identified 25 individuals with severe hyposmia. Elimination of subjects with confounding conditions
yielded 7 hyposmics for analysis. A 52-member pedigree including all affected individuals was constructed from the larger,
>1623-member pedigree, and a genome-wide screen for loci influencing the trait of hyposmia using 1123 markers was per-
formed. Themost significant evidence for linkagewith hyposmia extended over a 45 cM region on chromosome 4q (P= 0.0013).
Although this signal meets the criteria for suggestive linkage only and will require replication, these results offer the strongest
data to date on the effects of genetic variation on olfactory dysfunction.
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Introduction

Olfactory dysfunction is an important public health problem

in the United States, with the reported prevalence of olfac-

tory impairment ranging from 0.8% to 24.5% (Wysocki and
Gilbert 1989; Hoffman et al. 1998; Murphy et al. 2002). This

wide variation probably reflects differences in study design

and in the populations examined and known discrepancies

between self-reported and tested (albeit subjective depending

on cooperation) measures of olfactory function (Nordin

et al. 1995). In a recent study using testing, it was estimated

that approximately 14 million Americans over the age of 55

years have chronic olfactory impairment (Murphy et al.
2002). Because olfactory function declines with age (Doty

et al. 1984), the clinical impact of olfactory dysfunction is

likely to increase as our population ages.

Olfactory disorders have been classified as conductive

(peripheral transport problems), sensorineural (damage to

neuroepithelium), and central impairment (central nervous
system derangement). Olfactory dysfunction can arise from

multiple etiologies, including certain medications, endocrine

or metabolic disorders, congenital defects, industrial expo-

sures, infections, nasal obstruction, neoplasms, neurologic

or psychiatric disease, nutritional abnormalities, and pulmo-

nary disease (Murphy et al. 2003). The most common causes

of hyposmia or anosmia include prior upper respiratory tract

infections, head trauma, and sinonasal disease; these etiolo-
gies account for up to two-thirds of patients seen in clinics

who have complaints related to their sense of smell (Murphy

et al. 2003). Additionally, in up to 18% of patients with
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hyposmia, there is no clear cause (Temmel et al. 2002). Al-

though evidence of damage to the olfactory neuroepithelium

(including scar formation, neurodegeneration, and inflam-

mation) is observed for some of the many etiologies, com-

mon pathways that cause this damage or hinder its repair
have not been elucidated. Currently, our ability to diagnose

hyposmia or anosmia in patients precisely remains rudimen-

tary, leaving most diagnoses to clinical suspicion.

Treatment options for olfactory impairment of either con-

ductive or sensorineural origin are severely limited by our

current poor understanding of the pathophysiology of im-

paired olfaction. Although medical and surgical treatments

are available in cases with conductive causes, they are limited
in scope and success (Holbrook and Leopold 2003). Under-

standing the factors that predispose patients to olfactory loss

would provide important contributions to both our basic un-

derstanding of olfaction in human beings and advances in

clinical care, especially regarding genetic factors that influ-

ence susceptibility to environmental insults. Despite the large

number of etiologies, the precise pathology involved in these

disorders is incompletely understood. Studies of olfactory
physiology in man have been limited by access to tissue,

influences of environmental factors, and the complexity of

the neurosensory physiology. Therefore, novel approaches

to investigating olfaction in human subjects are necessary

for advances in our understanding of this area.

Better to understand the genetics of olfactory dysfunction,

we performed a genome-wide screen for loci that influence

hyposmia in the Hutterites, a founder population of
European ancestry that lives on communal farms across the

western United States and Canada. This population has sev-

eral important advantages for genetic mapping studies. First,

the Hutterites living in South Dakota (the subjects of our

studies) are derived from only 62 ancestors (maximum num-

ber of independent chromosomes = 124) who were born in

the early 1700s to the early 1800s. Thus, reduced genetic het-

erogeneity and fewer susceptibility alleles present at a ‘‘dis-
ease’’ locus are expected.

Second, their relatively recent origin results in relatively

few meioses that have occurred since the population’s found-

ing and, therefore, relatively larger chromosomal regions

flanking disease genes that have remained intact than in

the general population. As a result, linkage disequilibrium

extends over a greater distance than in outbred populations,

making the Hutterites a population ideally suited for map-
ping of genes that influence common diseases, by means of

both association tests and linkage studies (Wright et al. 1999;

Abney et al. 2000).

Third, the Hutterites practice a communal lifestyle, thus

reducing confounding from environmental variables. All

Hutterites are exposed to similar environments, which are

measurable and consistent. For example, smoking is pro-

hibited and rare in the population, thereby eliminating an
environmental exposure that may affect olfaction. The uni-

form environment also minimizes the effects of nongenetic

factors and should enhance the relative effects of genetics

on variation in disease expression.

Fourth, prior studies in the Hutterites have shown that

nearly all the common alleles that are present in the outbred

European population are also present in the Hutterites at the
same relative frequencies and show similar associations with

common diseases (Bourgain et al. 2003; Newman et al. 2004).

Thus, the loci that influence olfactory function in theHutterites

should be the same loci that influence hyposmia in the out-

bred populations, as our studies of other phenotypes such as

asthma indicate so far (Abney et al. 2000; Donfack et al.

2000; Ober et al. 2000; Weiss et al. 2005; Kurz et al. 2006).

Lastly, the Hutterites of South Dakota have been the
subjects of complex trait mapping studies for more than

10 years. As part of these studies, about 750 individuals have

been genotyped at more than 1000 loci, and association-

based mapping statistics have been developed that harness

the wealth of information present in this large, extended ped-

igree (Abney et al. 2000, 2002; Bourgain et al. 2003). This

data set has already been used for mapping of genes for

asthma and atopy (Ober et al. 1999; Kurz et al. 2006), trigly-
cerides (Newman et al. 2003), morning serum cortisol

(Kurina et al. 2005), whole-blood serotonin levels (Weiss

et al. 2004), stuttering (Wittke-Thompson et al. 2006), and

more than 15 additional quantitative traits (Weiss et al.

2006).

Here, we present the results of a genome-wide screen for

loci influencing the trait of hyposmia in this population.

Materials and methods

Subject recruitment

In March 2001, we conducted a population-based study of

Hutterites who were the subject of prior studies of the genet-

ics of complex traits in our laboratory (Ober et al. 1999, 2000,

2001; Weiss et al. 2006). We used the following inclusion cri-

teria: age above 13 years, ability to comply with the question-

naire and smell test, and presence in the colony (communal

farm) on the day of the study visit. The Institutional Review

Board of The University of Chicago approved this study,
and informed consent was obtained.

Evaluation of phenotype

Subjects answered the 12-item Cross-Cultural Smell Identifi-

cation Test (CC-SIT, now renamed B-SIT: Sensonics, Inc.;

Haddon Heights, NJ), a psychophysical test that measures

olfactory function. This test, modified from the University

of Pennsylvania Smell Identification Test (UPSIT), has been

validated in cross-cultural populations (Liu et al. 1995;

Doty et al. 1996). We selected this measure because of its ease

of administration to large numbers of subjects, its extensive
use and validation in other studies, and its ability to provide a

score with age and sex norms. The technique for administra-

tion of the CC-SIT is described in detail elsewhere (Doty et al.
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1996) but involves 12 items of forced preference smell iden-

tification in a scratch-and-sniff format. Smell tests were

scored with use of age and sex norms (Doty et al. 1996).

Because there are no instruments specifically designed for

this purpose, we developed a survey containing closed- and
open-ended questions regarding sinonasal and olfactory

symptoms and medical history. This questionnaire was mod-

ified to meet Hutterite cultural norms and was administered

through personal interview overseen by J.M.P. at the South

Dakota Hutterite colonies. The questionnaires asked about

perception of smell, themorbidities for olfactory dysfunction

(current or recent [within the last 3 weeks] common colds,

history of nasal trauma, history of rhinosinusitis/polyps/
allergies, nasal/paranasal sinus surgery), and nasal symp-

toms (congestion, postnasal drip, facial pressure, facial pain,

headache, and nasal obstruction). Subjects did not know the

result of the smell test before answering the smell perception

question. Presence of atopy was determined by skin prick

testing performed during prior visits (Ober et al. 2000).

The diagnosis of hyposmia was based on the following cri-

teria: 1) a CC-SIT score demonstrating loss of smell accord-
ing to normative values (£5th percentile) and 2) absence of

confounding medical conditions. Setting our threshold for

hyposmia low (£5th percentile), the phenotype of hyposmia

represents a generalized hyposmia. Because of the inherent

limitations of the test (12 items, no ability to test threshold)

and of phenotyping in the field, and the large number of pos-

sible odorants, we cannot accurately further delineate the

phenotype into hyposmia to a subset of odorants. It was
not possible to repeat testing of the individuals involved.

However, the test–rest reliability of the CC-SIT is reported

to be relatively high (0.71), and this 12-item test was found to

predict accurately the performance on the 40-item UPSIT

(Doty et al. 1995).

Genotyping

DNAwas extracted from whole blood by standard methods.

Genotyping of 658 autosomal microsatellite markers

(screening sets 9 and 51) was performed at the Mammalian

Genotyping Service in Marshfield, WI (http://research.

marshfieldclinic.org/genetics/home/index.asp) by means of
a scanning fluorescence detector system developed for

high-throughput genotyping. An additional 226 microsatel-

lites and 239 single-nucleotide polymorphisms (SNPs) or in-

sertion/deletions were gentoyped in our laboratory in these

individuals in selected regions according to standard meth-

ods. The 1123 microsatellites and SNP markers have an av-

erage spacing of 2.6 cM. The deCODE genetic map was

used for reference in this analysis (www.decode.com) (Kong
et al. 2002).

Statistical analysis

Agreement between the perception of smell and the result of

the CC-SIT was analyzed by means of kappa statistics.

Logistic regression was used for analysis of the associations

between the comorbidities and olfactory dysfunction. Such

comorbidities included allergic rhinitis, upper respiratory

tract infection (cold), and a history of trauma to the nose/

paranasal sinuses.
Because the pedigree that included all the hyposmics was

too large for programs using algorithms of exact methods,

we performed a multipoint nonparametric linkage (NPL)

analysis by using Simwalk 2.83 (Sobel and Lange 1996). This

program uses a Markov Chain Monte Carlo approach to

sample possible allele descent trees according to their likeli-

hood. Two identity by descent (IBD) statistics that measure

the degree of allele sharing among affected individuals were
calculated and P values determined by comparison to a null

distribution of these statistics when only the pedigree struc-

ture and the affection status of each person was available.

NPLpairs is the extent of allele sharing among all affected

pairs, and NPLall is the extent of allele sharing among all af-

fected individuals. Both statistics are intended to detect link-

age to traits in an additive model.

Results

Demographics

There were 297 subjects who participated in the study. Data

were available for 285 subjects for the smell test and for 291

subjects for the sinonasal/olfactory questionnaire. Of the 285
subjects, 114 were male and 171 were female, with ages rang-

ing from 14 to 74 years (mean, 33.4 years). Relevant comor-

bidities, including the common cold, allergic rhinitis, or

a history of trauma to the nose or nasal/paranasal sinus sur-

gery, are shown in Table 1.

The overall prevalence of an abnormal CC-SIT was 8.8%

(95% confidence interval [CI]: 5.8–12.7%). This is lower than

the 24.5% prevalence reported in a community-based study
(Murphy et al. 2002) and may reflect population differences,

risk exposures such as pollution or tobacco smoke that are

absent in this population, or the severity of our cutoff (£5th
percentile).

The demographic and clinical features of the 25 people

with abnormal CC-SIT are shown in Tables 2 and 3. In

an unadjusted analysis, female sex (odds ratio [OR] =

1.8), a recent or current cold (OR = 2.88), and past nasal
trauma (OR= 1.16) were associatedwith hyposmia (Table 4).

However, in a multivariate analysis, only female sex (ad-

justed OR = 3.07, 95% CI = 1.01–9.39, P = 0.05) and the

presence of a common cold (adjusted OR = 2.99, 95% CI =

1.14–7.87, P = 0.03) remained significantly associated with

olfactory dysfunction in the Hutterites (Table 4). Although

a history of trauma to nose and paranasal sinuses was more

common in the hyposmics (adjusted OR= 2.24), this was not
statistically significant (95% CI = 0.55–9.07, P = 0.26). Sur-

prisingly, age was not associated with olfactory dysfunction

in this population, and there was a higher percentage of
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subjects in the younger (less than 50 years) age group with

hyposmia. The correlation of hyposmia by CC-SIT and

reported normal or abnormal smell perception was 0.08
(95% CI = �0.04–0.2). This is comparable to the results

of other studies showing discrepancies between self- reported

and tested loss of smell and emphasizes the need for testing

(Doty et al. 1986; Nordin et al. 1995; Temmel et al. 2002).

Selection of cases of hyposmia

To minimize the heterogeneity of the hyposmic phenotype,

we focused our studies on subjects who were identified by

CC-SIT and we excluded those with comorbidities. There-

fore, 120 individuals with a current or recent cold (within
the last 3 weeks) as well as 31 individuals with a history

of nasal or paranasal surgery or facial trauma were excluded.

Subjects with atopy were included in the study because atopy

was not associated with hyposmia in this sample. This

resulted in a final sample of 7 Hutterites with hyposmia in

the absence of these related factors. Review of questionnaires

from these subjects did not reveal any other relevant clinical

information; specifically, these individuals had no acute or
chronic medical conditions, they did not take any medica-

tion, and they gave no other medical history. For the genetic

studies, we then broke all inbreeding loops in the pedigree

and constructed a 52-member pedigree by using PedHunter

(Agarwala et al. 1998), which was the smallest pedigree that

included the 7 affected individuals (Figure 1).

Table 1 Characteristics and comorbidities of 285 Hutterites

N (%) % measured olfactory
dysfunction (95% CI)

Sex

Male 114 (40) 6 (2.5–12.2)

Female 171 (60) 10.5 (6.4–16.1)

Age

<50 years old 247 (86.7) 9.3 (6.2–13.6)

‡50 years old 38 (13.3) 5.3 (1.4–17)

Allergic rhinitis 88 (30.9) 7.9 (3.3–15.7)

Current or recent common cold 120 (42.1) 13.3 (7.8–20.7)

Nasal trauma, including surgery 31 (10.9) 9.7 (3–25.8)

N, number of subjects in each category. Includes all subjects with both smell
test and survey data.

Table 2 Results of olfactory testing by age group

Age (years) Number
evaluated

Number with
hyposmia

% with hyposmia
(95% CI)

10–14 3 0 0

15–19 49 6 12.3 (5.7–24.2)

20–24 42 8 19 (10.0–33.3)

25–29 30 3 10 (3.5–25.6)

30–34 38 2 5.3 (1.4–17.3)

35–39 44 2 4.5 (1.3–15.1)

40–44 20 1 5 (0.89–23.6)

45–49 19 1 5.3 (0.93–24.6)

50–54 14 1 7.1 (1.3–31.5)

55–59 6 1 16.7 (3.0–56.3)

60–64 8 0 0

65–69 11 0 0

70–74 1 0 0

Total 285 25 8.8 (5.8–12.7)

Includes all subjects with smell test data.

Table 3 Characteristics and comorbidities of 25 subjects with hyposmia

Age
(years)

Sex Perception
of hyposmia

Current or
recent cold

Atopy Nasal trauma/
surgery

15 F � � + �

16 F � + + �

17 M � + + �

18 F � + � �

19 F � � + �

19 F � � � �

21 M + + � �

21 F � + + �

21 F � � � �

22 M + + NA �

22 F � + � �

23 F � � � +

23 F � + + �

24 F � + � �

27 F � + NA �

28 F + + � �

29 F � � � �

30 M � + � �

34 F � + � �

37 M NA NA NA NA

40 F � � � �

42 M � + � +

48 M � + � �

53 F + + + +

59 F � � NA �

M, male; F, female; NA, data not available; +, presence; �, absence.
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Genome screen for hyposmia

NPL analysis is a powerful tool for genetic mapping

(Kruglyak et al. 1996). This technique is independent of spe-

cific models for the inheritance of the phenotype and is based
only on IBD measurements at the marker loci. IBD refers to

the probabilities that affected individuals share marker

alleles identical by descent, that is, inherited from a common

ancestor. If a marker is linked to a disease locus, one expects

to see a clustering, among the affected individuals, of a few

marker alleles descended from the pedigree founders.

The P values for the NPLall statistic across the 22 auto-

somes are plotted in Figure 2. The NPLpair results were vir-
tually indistinguishable from theNPLall results and therefore

are not shown. The strongest evidence for linkage to hypo-

smia in the pedigree was observed on chromosome 4q with

markerD4S3333 at 137.4 cM from the p terminus (p ter) (P=

0.0013). Additional regions showing nominal evidence for

linkage include chromosome 12 (P = 0.047 at 52.54 cM from

p ter and P = 0.037 at 110.24 cM from p ter), chromosome

16 (P = 0.046 at 114.00 cM from p ter), and chromosome 17
(P = 0.048 at 21.40 cM from p ter and P = 0.044 at 56.48 cM

from p ter).

The strongest linkage signal (D4S3333) meets the criteria

for suggestive linkage (P < 1.7 · 10�3) following Lander and

Kruglyak (1995). Whereas it is not computationally feasible

to conduct the simulations required for determining if our

Table 4 Association between CC-SIT and comorbidities

CC-SIT Crude OR Adjusted OR 95% CI P value (adjusted OR)

Abnormal Normal

Sex

Female 18 153 1.8 3.07 1.01–9.39 0.05

Male 7 107

Age

<50 years 23 224 0.33 0.34 0.04–2.7 0.31

‡50 years 2 36

Allergic rhinitis

Positive 7 81 0.91 0.90 0.34–2.41 0.84

Negative 14 147

Current/recent cold

Presence 16 104 2.88 2.99 1.14–7.87 0.03

Absence 8 150

History of trauma

Positive 3 28 1.16 2.24 0.55–9.07 0.26

Negative 21 227

Includes all subjects with both survey and smell data.

Figure 1 Pedigree of hyposmic subjects and their ancestors. *Individuals
who were genotyped.
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results meet genome-wide significance, it is important to note
that estimates of the empirical P value using Simwalk2 were

found to be conservative of the true P value when compared

with exact results for large simulatedpedigreeswhere the exact

results were known and for pedigrees small enough so that ex-

act P values could be calculated (Sobel and Lange 1996).

Therefore, we are likely to be underestimating the true signif-

icance of our findings in these analyses.We aremuch less con-

fident of the robustness of the weaker linkage signals, which
marginallymeet nominal significance at best. These could eas-

ily represent false positive results. Hence, we focused subse-

quent investigationsonourmost significant linkagepeakonly.

To define a critical region for further investigation, we set

a P < 0.01 significance threshold boundary of 102–147 cM

(Figure 3), corresponding to a 53-Mb physical distance map-

ping to the;95–148Mb position on chromosome 4 (4q22.3–

4q31.22) (NCBI Build 36.2, September 2006). Within this
critical region, 2 subpeaks are evident in addition to the most

significantpeakat137.4cM; theycorrespondtoD4S1647 (P=

0.0034 at 104.9 cM; peak C in Figure 3) and D4S2394 (P =

0.0017 at 129.2 cM; peak B in Figure 3). This 52-Mb critical

region contains 288 genes (183 known RefSeq genes, 105 hy-

pothetical genes), none of which are olfactory receptor genes.

Discussion

Demographics of olfactory dysfunction in the Hutterites

The prevalence of olfactory dysfunction among the Hutterites,

as defined by the performance on the CC-SIT, was 8.8%

(95% CI = 5.8–12.7%). This prevalence was higher than in

some previous community-based studies (Wysocki and
Gilbert 1989; Hoffman et al. 1998) but lower than others

(Murphy et al. 2002) that may reflect differences in study de-

sign (e.g., tested vs. self-reported olfactory determination,

self vs. monitored administration). The agreement between

the awareness of olfactory loss and the CC-SIT results was

quite poor in this study. That people usually are unaware of

their smell loss despite having olfactory dysfunction implies
a lack of perception, minimal loss of smell, or misinterpre-

tation by the subject of the test. Likewise, people believing

their olfactory sense was abnormal had, in fact, normal ol-

faction by CC-SIT, implying that the test is not capturing the

perceived abnormality. Therefore, self-reported smell func-

tion may provide misleading information, and olfactory test-

ing is necessary for assessment of olfactory function. Doty

et al. (1988) found that, in the case of Parkinson’s disease,
approximately 90% of patients had a demonstrable olfactory

deficit, even though only 28% of such patients were aware of

their deficit. Studies in other clinical settings noted similar

observations (Doty et al. 1986; Nordin et al. 1995; Temmel

et al. 2002), including the use of threshold testing (Philpott

et al. 2006). Murphy et al. (2002) also showed that self-report

in older adults significantly underestimated the prevalence

rates obtained by olfactory testing.
The common cold and female sex were found to be 2 fac-

tors contributing to olfactory dysfunction in the Hutterites,

with the adjusted ORs of 2.99 for presence of the common

cold (95% CI = 1.14–7.87) and 3.07 for female sex (95% CI =

1.01–9.39), respectively. Age above 50 years, allergic rhinitis,

and a history of nasal/facial trauma including nasal/para-

nasal sinus surgery, after adjusting for other effects, did

not show any statistically significant effect on olfactory dys-
function in this study. Although there was a trend toward

increased olfactory dysfunction with a history of trauma

to the nose/paranasal sinuses (adjustedOR= 2.24with awide

95% CI of 0.55–9.07), this was not statistically significant,

perhaps as a result of the lack of severe head trauma in this

Figure 2 Genome-wide linkage scan for susceptibility to hyposmia. Position
in cM according to the deCODE genetic map is shown on the x axis and
–log10 (P value) of the NPLall statistic on the y axis. Chromosome number
is indicated along the top.

Figure 3 Linkage for susceptibility to hyposmia for chromosome 4. The
highest linkage peak, A (P = 0.0013), occurs at 137.4 cM (D4S3333). The
critical region, significant at the P < 0.01 threshold, is indicated by vertical
dashed lines at 102 and 147 cM. Two additional linkage peaks occur within
this region: B (P = 0.0034) at 104.9 cM (D4S1647) and C (P = 0.0017) at
129.2 cM (D4S2394). Axes are labeled as in Figure 2.
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rural population (there were no motor vehicle accidents or

assaults).

The common cold has been postulated to be one of the

leading causes of olfactory dysfunction (Temmel et al.

2002). This could occur as a result of the conduction prob-
lems caused by nasal congestion or inflammatory effects on

the olfactory pathway (Cowart et al. 1993). Rydzewski et al.

(2000) demonstrated that the prevalence of hyposmia in al-

lergic rhinitis was 21.4%, higher than the prevalence in our

study of 7.9%, andmay reflect the stringency of the definition

of hyposmia in our study. Simola andMalmberg (1998) com-

pared olfactory thresholds in 105 rhinitis patients and 104

healthy controls to analyze possible relationships between
the sense of smell and rhinitis, age, sex, smoking, prick-test

results, nasal resistance, and history of nasal or paranasal

surgery. They found that age and rhinitis were the only var-

iables with a significant effect on the olfactory threshold.

Neither smoking habits nor a history of nasal or paranasal

surgery were related to olfactory thresholds in that study.

The differences between our results and those of other stud-

ies might be due to the differences in population (urban vs.
rural), study design (hospital based vs. population based),

different measurement of olfactory function (threshold vs.

identification vs. subjective report), or the different status

of allergic rhinitis at the time of test administration (all test-

ing in our study was done in the winter months, outside of

certain allergen seasons). In particular, the lifelong absence

of exposure to environmental tobacco smoke (which is

known to impair olfactory function [Frye et al. 1990;
Murphy et al. 2002]) in the Hutterites may contribute both

to the overall lower prevalence of hyposmia and the lack of

an association with age.

Genetics of olfaction

A genetic perspective to understanding olfactory dysfunc-
tion should provide insight into chemosensory physiology.

Studies employing a genetic approach to olfaction in man

are limited, although animal studies suggest a genetic basis

for a variety of related phenotypes (reviewed in Segal et al.

1995). Limited data from human studies suggests that ge-

netic factors may affect the sense of smell. For example, id-

iopathic hypogonadotrophic hypogonadism with anosmia,

or Kallmann’s syndrome (KS), is a rare genetic disorder with
variable expressivity (Kallmann et al. 1944). Family mem-

bers have a variety of phenotypes, including anosmia alone.

This condition is genetically heterogeneous, with both X-

linked, autosomal dominant, and autosomal recessive trans-

mission reported (Kallmann et al. 1944; Hockaday 1966;

White et al. 1983). Mutations in the KS1 locus (KAL1) on

chromosome Xp22.3 have been identified in the X-linked

form (Franco et al. 1991; Legouis et al. 1991; Bick et al.
1992; Hardelin et al. 1992), and mutations in the fibroblast

growth factor receptor 1 locus (KAL2) on chromosome

8p11.2–12 cause one autosomal dominant form of the dis-

ease (Dode et al. 2003). A recent study also reported linkage

of KS to chromosome19p13, with loss-of-function muta-

tions in the GPR54 locus causing KS (de Roux et al. 2003).

Studies of nonsyndromic forms of anosmia or hyposmia

also support a genetic basis of olfactory function. Forrai et al.
(1981) examined the genetic influence on the ability to smell

ketones by using a twin pair study design and observed

genetic effects on the detection of acetone. Wysocki and

Beauchamp (1984) studied sensitivity to androstenone and

pyridinebyusing twinpairs, showing that all themonozygotic

twin pairs, but only 61% of dizygotic pairs, were concordant

for sensitivity to androstenone.Agenetic influence onandros-

tenone detection was confirmed by Gross-Isserhoff et al.
(1992) who also used a twin pair design and showing a genetic

effecton sensitivity to isoamylnitrate.Using theUPSIT,Doty

et al. (1984) and Segal et al. (1995) found a higher correlation

of scores between monozygotic twins (r = 0.31) than between

dizygotic twins (r = 0.15). Using a different measure of pref-

erence ratings of UPSIT odors, Topolski reported a genetic

influence on certain items (Segal et al. 1995). Also, in a twin

pair study, Finkel et al. (2001) found moderate heritability
for several olfactory measures, including odor identification,

intensity, detection, and pleasantness.

Knaapila et al. (2007) recently reported the first genome-

wide screen of olfactory phenotypes. They did not find any

significant results for linkage with the phenotype of identifi-

cation by CC-SIT, although there were methodologic differ-

ences in their analytic strategy (phenotyping all subjects

without exclusions; quantitative mapping based on total score
on the B-SIT vs. qualitative analysis based on selecting severe

hyposmia by age/sex norms in our study) and marker density

(350 markers vs. 1123 in our study). Additionally, this popu-

lation sample of 146 individuals from 26 families was recruited

through a study of migraine in Finland. Population, diet, al-

lele frequency, or environmental differences, inclusion of

smokers, and/or the presence of migraine may explain the dis-

crepancy between their results and ours. Interestingly, they
did show a significant linkage with the phenotype of pleasant-

ness of cinnamon odor (logarithmof the odds= 3.01) on chro-

mosome 4q33.3 at 163.65 cM, just outside our region.

Recently, subjects with Bardet–Biedl syndrome (BBS),

which encompasses retinal degeneration, truncal obesity, re-

nal and limb malformations, and developmental delay, have

been shown to have partial or complete anosmia (Kulaga

et al. 2004). To date, 12 BBS loci have been identified
(reviewed in Li and Wong 2001; Mykytyn et al. 2001;

Nishimura et al. 2001; Sheffield et al. 2001; Mykytyn et al.

2002; Ansley et al. 2003; Badano et al. 2003; Chiang et al.

2004; Fan et al. 2004; Nishimura et al. 2005; Chiang

et al. 2006; Stoetzel et al. 2006, 2007). In fact, the loci for

2 members of this novel group of genes, BBS7 (Badano

et al. 2003) and BBS12 (Stoetzel et al. 2007), lie within

our most significant region on chromosome 4. This finding
may indicate that more subtle perturbations in BBS7 and/or

BBS12 function may underlie olfaction in nonsyndromic
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olfactory dysfunction and make these loci excellent candi-

dates for association with hyposmia.

Although the large number of candidate genes precludes

extensive discussion here, other promising candidate genes

include SCYE1 (Shalak et al. 2007), a cytokine generated
in apotosis, andCASP6, a caspase that is activated in human

neurons upon an apoptotic insult. Interestingly, apoptosis

has been implicated in olfactory pathology (Kern et al.

2004). Additionally, another candidate in the region,

UNC5C, a receptor involved in both neural migration and

development, has also been reported to be involved in apo-

ptosis (Thiebault et al. 2003).

Our results further support a genetic etiology for hypo-
smia, and they suggest that genetic variation influences

the olfactory system. We selected our phenotype and thresh-

old in order carefully to reduce the issue of confounding en-

vironmental and host factors as much as possible to focus on

idiopathic olfactory decline. Nevertheless, it is possible that

our affected individuals had an environmental exposure

influencing their susceptibility to olfactory loss. As viral ill-

ness is one of the most common reported causes of the loss of
the sense of smell, it is possible that postviral damage is the

etiology of the olfactory loss in our affected individuals. In

olfactory clinics, some patients note the loss of smell to be

temporally associated with an especially severe viral upper

respiratory tract infection (URI), but some do not notice

the insult. Moreover, injury from a URI that is subtotal

or predisposing to further loss by apoptosis or other mech-

anisms without patient perception is entirely possible. In this
case, the phenotype being mapped in our study might be an

example of a gene–environment interaction where geneti-

cally susceptible individuals who experience the appropriate

viral insult are predisposed to loss of smell. Nevertheless,

mapping of genes that underlie such a phenomenon would

provide information on the mechanisms involved in this pro-

cess. Hence, our data would still provide useful information

on susceptibility to olfactory loss, although perhaps not on
nonvirally mediated decline.

Another possibility is that the affected individuals share

a common diagnosis of isolated, nonsyndromal congenital

hyposmia. We believe that it is unlikely that our subjects

had congenital hyposmia, given the lack of a supportive

medical history and the absence of behaviors (inability to de-

tect body odor, complaints of flavorless food, inability to no-

tice farm odors, spoiled milk, etc.) that would be associated
with this disease. Although a number of our affected subjects

were in their teens, we believe that our demographics reflects

the age structure of our population, which has a large num-

ber of younger individuals because of large family size.

Lastly, isolated congenital hyposmia is extremely rare and

has been mapped in one small family study to a different re-

gion of the genome (chromosome 18p) (Ghadami et al.

2004).We believe that a number of factors influence the com-
plex trait of hyposmia, both environmental and genetic, and

teasing out this interaction remains a challenge. Although

the injuries might be heterogeneous, there may be a common

genetic susceptibility to a variety of insults that lead to a

common outcome of olfactory decline. Our studies will even-

tually require replication in other population samples for

analysis of these issues.
The ability of the nervous system to distinguish among

many odors and the variability in olfactory function among

individuals are under intense scrutiny. To understand how

genetic factors may explain the variability in human olfac-

tion between individuals, Menashe et al. (2002, 2003) exam-

ined the prevalence of segregating pseudogenes in the

olfactory receptor gene family and proposed that the com-

bination of these polymorphisms could underlie variability
in olfaction between individuals and populations. Indeed,

Keller et al. (2007) recently reported evidence that supports

this concept, finding that variation in an olfactory receptor

gene, OR7D4, affects odorant perception in human subjects

and is associated with differential binding to its odorant in

vitro. Additionally, 2 of the common deletion polymor-

phisms in the human genome are in olfactory receptor genes

(McCarroll et al. 2006). These are intriguing ideas that at-
tempt to explain how olfactory function varies among indi-

viduals. However, although specific olfactory receptor genes

have been implicated in specific anosmia in mouse models

(Griff and Reed 1995; Zhang and Firestein 2002), our phe-

notype of generalized hyposmia is perhaps less likely to be

caused by variation in olfactory receptor genes. Indeed, there

are no olfactory receptor genes in the linked region on chro-

mosome 4q, indicating that variations in nonolfactory recep-
tor genes also influence smell perception.

This study was the first step in identifying novel genes that

contribute to variation in olfaction in man. Subsequent stud-

ies to identify the specific gene within our linked region are

currently under way.
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Dodé C, Levilliers J, Dupont JM, De Paepe A, Le Dû N, Soussi-Yanicostas N,
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